Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 102(4-1): 042139, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212705

RESUMO

Population survival depends on a large set of factors and on how they are distributed in space. Due to landscape heterogeneity, species can occupy particular regions that provide the ideal scenario for development, working as a refuge from harmful environmental conditions. Survival occurs if population growth overcomes the losses caused by adventurous individuals that cross the patch edge. In this work, we consider a single species dynamics in a patch with a space-dependent diffusion coefficient. We show analytically, within the Stratonovich framework, that heterogeneous diffusion reduces the minimal patch size for population survival when contrasted with the homogeneous case with the same average diffusivity. Furthermore, this result is robust regardless of the particular choice of the diffusion coefficient profile. We also discuss how this picture changes beyond the Stratonovich framework. Particularly, the Itô case, which is nonanticipative, can promote the opposite effect, while Hänggi-Klimontovich interpretation reinforces the reduction effect.

2.
Phys Rev E ; 100(3-1): 032118, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640017

RESUMO

Chains of particles coupled through anharmonic interactions and subject to non-Gaussian baths can exhibit paradoxical outcomes such as heat currents flowing from colder to hotter reservoirs. Aiming to explore the role of generic nonharmonicities in mediating the contributions of non-Gaussian fluctuations to the direction of heat propagation, we consider a chain of power-law oscillators, with interaction potential V(x)∝|x|^{α}, subject to Gaussian and Poissonian baths at its ends. Performing numerical simulations and addressing heuristic considerations, we show that a deformable potential has bidirectional control over heat flux.

3.
Phys Rev E ; 99(6-1): 062225, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330753

RESUMO

Internal feedback is commonly present in biological populations and can play a crucial role in the emergence of collective behavior. To describe the temporal evolution of the distribution of a single-species population, we consider a generalization of the Fisher-KPP equation. This equation includes the elementary processes of random motion, reproduction, and, importantly, nonlocal interspecific competition, which introduces a spatial scale of interaction. In addition, we take into account feedback mechanisms in diffusion and growth processes, mimicked by power-law density dependencies. This feedback includes, for instance, anomalous diffusion, reaction to overcrowding or to the rarefaction of the population, as well as Allee-like effects. We show that, depending on the kind of feedback that takes place, the population can self-organize splitting into disconnected subpopulations, in the absence of external constraints. Through extensive numerical simulations, we investigate the temporal evolution and the characteristics of the stationary population distribution in the one-dimensional case. We discuss the crucial role that density-dependence has on pattern formation, particularly on fragmentation, which can bring important consequences to processes such as epidemic spread and speciation.

4.
J Theor Biol ; 446: 11-18, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29499251

RESUMO

A key issue in ecology is whether a population will survive long term or go extinct. This is the question we address in this paper for a population in a bounded habitat. We will restrict our study to the case of a single species in a one-dimensional habitat of length L. The evolution of the population density distribution ρ(x, t), where x is the position and t the time, is governed by elementary processes such as growth and dispersal, which, in standard models, are typically described by a constant per capita growth rate and normal diffusion, respectively. However, feedbacks in the regulatory mechanisms and external factors can produce density-dependent rates. Therefore, we consider a generalization of the standard evolution equation, which, after dimensional scaling and assuming large carrying capacity, becomes ∂tρ=∂x(ρν-1∂xρ)+ρµ, where µ,ν∈R. This equation is complemented by absorbing boundaries, mimicking adverse conditions outside the habitat. For this nonlinear problem, we obtain, analytically, exact expressions of the critical habitat size Lc for population survival, as a function of the exponents and initial conditions. We find that depending on the values of the exponents (ν, µ), population survival can occur for either L ≥ Lc, L ≤ Lc or for any L. This generalizes the usual statement that Lc represents the minimum habitat size. In addition, nonlinearities introduce dependence on the initial conditions, affecting Lc.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Dinâmica Populacional
5.
Phys Rev E ; 94(4-1): 042413, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841580

RESUMO

Population dynamics is constrained by the environment, which needs to obey certain conditions to support population growth. We consider a standard model for the evolution of a single species population density, which includes reproduction, competition for resources, and spatial spreading, while subject to an external harmful effect. The habitat is spatially heterogeneous, there existing a refuge where the population can be protected. Temporal variability is introduced by the intermittent character of the refuge. This scenario can apply to a wide range of situations, from a laboratory setting where bacteria can be protected by a blinking mask from ultraviolet radiation, to large-scale ecosystems, like a marine reserve where there can be seasonal fishing prohibitions. Using analytical and numerical tools, we investigate the asymptotic behavior of the total population as a function of the size and characteristic time scales of the refuge. We obtain expressions for the minimal size required for population survival, in the slow and fast time scale limits.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Conservação dos Recursos Naturais , Dinâmica Populacional , Fatores de Tempo
6.
Artigo em Inglês | MEDLINE | ID: mdl-26382439

RESUMO

We propose a general model to study the interplay between spatial dispersal and environment spatiotemporal fluctuations in metapopulation dynamics. An ecological landscape of favorable patches is generated like a Lévy dust, which allows to build a range of patterns, from dispersed to clustered ones. Locally, the dynamics is driven by a canonical model for the time evolution of the population density, consisting of a logistic expression plus multiplicative noises. Spatial coupling is introduced by means of two spreading mechanisms: diffusion and selective dispersal driven by patch suitability. We focus on the long-time population size as a function of habitat configurations, environment fluctuations, and coupling schemes. We obtain the conditions, that the spatial distribution of favorable patches and the coupling mechanisms must fulfill, to grant population survival. The fundamental phenomenon that we observe is the positive feedback between environment fluctuations and spatial spread preventing extinction.


Assuntos
Meio Ambiente , Modelos Biológicos , Dinâmica Populacional , Retroalimentação , Processos Estocásticos , Fatores de Tempo
7.
Artigo em Inglês | MEDLINE | ID: mdl-25122348

RESUMO

System-environment interactions are intrinsically nonlinear and dependent on the interplay between many degrees of freedom. The complexity may be even more pronounced when one aims to describe biologically motivated systems. In that case, it is useful to resort to simplified models relying on effective stochastic equations. A natural consideration is to assume that there is a noisy contribution from the environment, such that the parameters that characterize it are not constant but instead fluctuate around their characteristic values. From this perspective, we propose a stochastic generalization of the nonlocal Fisher-KPP equation where, as a first step, environmental fluctuations are Gaussian white noises, both in space and time. We apply analytical and numerical techniques to study how noise affects stability and pattern formation in this context. Particularly, we investigate noise-induced coherence by means of the complementary information provided by the dispersion relation and the structure function.


Assuntos
Meio Ambiente , Modelos Teóricos , Dinâmica não Linear , Dinâmica Populacional , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...